
Intro to x64 Reversing

SummerCon 2011 - NYC
Jon Larimer

email: jlarimer@gmail.com
twitter: @shydemeanor

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 2

Before we begin...

● This presentation assumes you can reverse
x86 code

● You might learn something even if you can't,
so don't leave

● If I go to fast, yell at me
● Find a mistake, I drink
● THERE WILL BE A QUIZ!

● If you answer wrong, you drink

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 3

Agenda

● Intro / History of x64
● The x64 Platform
● Microsoft x64 ABI
● SysV x64 ABI
● Tools for reversing x64

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 4

x64 reversing challenges

● If you're used to reversing 32 bit x86
code, x64 can be confusing at first

● Easy parts
● Instructions are mostly the same as you're used to
● There are a few more registers

● Hard parts
● Calling convention is totally different
● Debugging optimized code can be tricky

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 5

Name soup!
● AMD

● x86-64
● AMD64

● Intel

● IA-32e
● EM64T
● Intel 64

● Oracle/Microsoft

● x64

● BSD - amd64

● Linux kernel - x86_64

● GCC - amd64

● Debian/Ubuntu - amd64

● Fedora/SuSE - x86_64

● Solaris - amd64

Note: IA-64 is Itanium, NOT
x86-x64!

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 6

History of x64
● 1999 - AMD announces x86-64

● 2000 - AMD releases specs

● 2001 - First x86-64 Linux kernel available

● 2003 - First AMD64 Operton released

● 2004 - Intel announces IA-32e/EM64T, releases first x64 Xeon
processor

● 2005 - x64 versions of Windows XP and Server 2003 released

● 2009 - Mac OS 10.6 (Snow Leopard) includes x64 kernel

● 2009 - Windows Server 2008 R2 only available in x64 version

● 2010 - 50% of Windows 7 installs running the x64 version

● 2011 - 40% of Steam users in April 2011 HW survey use Win7 x64

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 7

The x64 Platform

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 8

What is x64?
● Extension to 32 bit x86 - x64 “long mode”

● Can address up to 64 bits (16EB) of virtual memory*

● Can address up to 52 bits (4PB) of physical memory**

● 64 bit general purpose registers - RAX, RBX, ...

● 8 new GP registers (R8-R15)

● 8 new 128 bit XMM registers (XMM8-XMM15)

● New 64 bit instructions: cdqe, lodsq, stosq, etc

● Ability to reference data relative to instruction pointer (rip)

* Limited by processor implementation, most only support 48 bits now...
** Intel currently supports 40 bits of physical memory

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 9

Long mode

● 64 bit flat (linear) addressing
● Segment base is always 0 except for FS and GS

● Stack (SS), Code (CS), Data (DS) always in the same
segment

● Default address size is 64 bits
● Default operand size is 32 bits

● 64 bit operands (RAX, RBX, ...) are specified with “REX prefix”
in the opcode encoding

● 64 bit instruction pointer (RIP)

● 64 bit stack pointer (RSP)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 10

Canonical addresses

● Current implementations only
support 48 bit linear addresses

● Canonical form means most
significant bit of address is extended
to bit 63

● Bits 0-47 are the address, bits 48-63 are the
same as bit 47

● Windows uses high addresses for
kernel, low addresses for user mode

● Non-canonical address access results
in #GP

Non-canonical Address Range

Canonical High Part

Canonical Low Part

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

0x0000800000000000

0xFFFF7FFFFFFFFFFF

48 bit canonical address ranges

Bit 0Bit 63

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 11

x64 registers

● 32 bit registers extended to 64 bits
● eax → rax

● ebx → rbx

● esp → rsp

● 8 additional 64 bit registers
● r8, r9, r10, ... r15

● 8 additional 128 bit XMM (SSE) registers
● xmm8, xmm9, ... xmm15

● Used for vector and floating point arithmetic

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 12

Intel/AMD AVX

● AVX is Advanced Vector eXtension

● Adds 8 256 bit registers
● ymm0-ymm7

● Low 128 bits of AVX registers overlap with XMM (SSE) registers
● xmm0-xmm7

● Also a few new instructions

● First CPUs with AVX were the Intel Sandy Bridge processors
released Q1 2011

YMM0

XMM0

0128256

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 13

x64 Registers

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14
R15

63 031

EIP
EFLAGS

RIP

RFLAGS

63 031

NOTE: Top half of RFLAGS is
reserved, always 0

= new in x64

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 14

Register operation in x64 mode

RAX

EAX

AX

AH AL

R8

R8D

R8W

R8B/R8L

07153163

07153163

zero-extended

zero-extended

not modified

not modified

not modified

not modified

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 15

POP QUIZ #1!

● How many bits is R9D?

● How many bits is RSP?

● How many bits is R12W?

● How many bits is R10B?

● How many bits is R16?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 16

POP QUIZ #1!

● How many bits is R9D? 32

● How many bits is RSP?

● How many bits is R12W?

● How many bits is R10B?

● How many bits is R16?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 17

POP QUIZ #1!

● How many bits is R9D? 32

● How many bits is RSP? 64

● How many bits is R12W?

● How many bits is R10B?

● How many bits is R16?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 18

POP QUIZ #1!

● How many bits is R9D? 32

● How many bits is RSP? 64

● How many bits is R12W? 16

● How many bits is R10B?

● How many bits is R16?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 19

POP QUIZ #1!

● How many bits is R9D? 32

● How many bits is RSP? 64

● How many bits is R12W? 16

● How many bits is R10B? 8

● How many bits is R16?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 20

POP QUIZ #1!

● How many bits is R9D? 32

● How many bits is RSP? 64

● How many bits is R12W? 16

● How many bits is R10B? 8

● How many bits is R16? Not a register...

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 21

POP QUIZ #2!

● What's in RAX after each instruction?

 MOV RAX, 1111111111111111h

 INC AL

 INC AX

 INC EAX

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 22

POP QUIZ #2!

● What's in RAX after each instruction?

 MOV RAX, 1111111111111111h
RAX = 0x1111111111111111

 INC AL

 INC AX

 INC EAX

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 23

POP QUIZ #2!

● What's in RAX after each instruction?

 MOV RAX, 1111111111111111h
RAX = 0x1111111111111111

 INC AL
RAX = 0x1111111111111112

 INC AX

 INC EAX

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 24

POP QUIZ #2!

● What's in RAX after each instruction?

 MOV RAX, 1111111111111111h
RAX = 0x1111111111111111

 INC AL
RAX = 0x1111111111111112

 INC AX
RAX = 0x1111111111111113

 INC EAX

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 25

POP QUIZ #2!

● What's in RAX after each instruction?

 MOV RAX, 1111111111111111h
RAX = 0x1111111111111111

 INC AL
RAX = 0x1111111111111112

 INC AX
RAX = 0x1111111111111113

 INC EAX
RAX = 0x0000000011111114

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 26

64 bit instructions

● CDQE Convert doubleword to quadword (sign-extend EAX
into RAX)

● CMPSQ Compare qword at RSI with qword at RDI

● CMPXCHG16B Compare RDX:RAX with m128

● LODSQ Load qword at address RSI into RAX

● MOVSQ Move qword from address RSI to RDI

● MOVZX zero-extend doubleword to quadword

● STOSQ Store RAX at address RDI

● SYSCALL Fast system call, replacement for SYSENTER

● SYSRET Fast system call, replacement for SYSEXIT

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 27

RIP-relative addressing

● Instruction-pointer-relative operands only used
for jumps/branches in x86

● Can't access EIP register explicitly in instructions

● Can be used for data access in x64 now:
● mov rax, qword ptr [rip+0x1000]

● Faster loading of position-independent code
● Windows: Fewer base relocations in PE files
● Linux: No GOT pointer setup in function prologue
● No pre-linking and no performance hit for ASLR on x64

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 28

RIP-relative addressing
IDA has “Explicit RIP addressing” mode in analysis options so you can see
when rip-relative addresses are used:

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 29

Application Binary Interface

● The ABI describes how to call functions
● Passing parameters
● Return value
● Stack frame
● Exceptions

● “Calling convention”
● There are two widely used x64 ABIs:

● Microsoft's x64 ABI (Windows)
● SysV x64 ABI (Linux, BSD, Mac)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 30

Microsoft x64 ABI

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 31

Microsoft x64 ABI

● There's only one calling convention (no
cdecl/stdcall/fastcall)

● Calling convention modeled after fastcall
● First 4 parameters passed in registers, rest on stack
● Return in RAX or XMM0

● Some registers are considered volatile
across function calls, some are not

● A function needs to save non-volatile registers if it
uses them

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 32

MS x64 ABI: Parameters & Return

● First four parameters passed in registers
● RCX, RDX, R8, R9 for integers

● XMM0, XMM1, XMM2, XMM3 for floats

– For variable arguments (varargs), floating point values are stored in the
floating point and integer registers!

● 1:1 correspondence between parameters and registers
– i.e., Parameter 2 is always RDX or XMM1

– Any parameter > 8 bytes passed by reference (no splitting)

● Additional parameters on stack
● Return value in RAX or XMM0

● XMM0 used for floats, doubles, and 128 bit types (__m128)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 33

MS x64 ABI: struct parameters

● If a struct can be packed into 8 bytes,
it's passed in a register

● Or on the stack if it's the 5th+ argument

● All structs over 8 bytes are passed by
reference

● Caller allocates space and copies the
struct before passing to the callee

● This is to avoid problems with the callee modifying
the caller's copy

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 34

MS x64 ABI: Parameters

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 35

MS x64 ABI: Params example
printf("%i %f %i %i %f\r\n", 1, 2.0, -4, 60, 5.5);

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 36

MS x64 ABI: struct param
example

In this example, the structure is
passed by reference, but a new
copy is created on the stack for the
called function

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 37

POP QUIZ #3

● What registers are used for the first four
integer parameters of a function?

● True/False: If a structure has two 64 bit
values, it can be passed to a function split
across two registers (i.e., r8 and r9)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 38

POP QUIZ #3

● What registers are used for the first four
integer parameters of a function?

ECX, EDX, R8, R9

● True/False: If a structure has two 64 bit
values, it can be passed to a function split
across two registers (i.e., r8 and r9)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 39

POP QUIZ #3

● What registers are used for the first four
integer parameters of a function?

ECX, EDX, R8, R9

● True/False: If a structure has two 64 bit
values, it can be passed to a function split
across two registers (i.e., r8 and r9)

● FALSE!

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 40

MS x64 ABI: Volatile registers

● Some registers are volatile and can be
destroyed by functions

● RAX, RCX, RDX, R8, R9, R10, R11

● You can't rely on them being the same after calling a
function (the compiler might be able to...)

● Some registers are non-volatile and must be
saved by functions that use them

● RBX, RBP, RDI, RSI, R12, R13, R14, R15

● You can rely on them being the same after calling a function
● A function that needs these registers must save them to the

stack and pop them off before returning

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 41

MS x64 ABI: The stack

● Function prologue needs to allocate stack space for saved
registers, local variables, arguments to callees

● Parameters are always at bottom of stack, right above return
address

● There's always space for 4 parameters, even if they're not used (home space)

● Stack is always 16 byte aligned
● This means address ends in zero hex

● Except within prologue

● Unless the function doesn't call any other functions

● All memory beyond RSP is volatile (could be used by the OS or
a debugger)

● No frame pointer (i.e., no mov rbp, esp in prologue) unless
stack is dynamically allocated (alloca)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 42

MS x64 ABI: Stack home space

● Caller's prologue allocates stack space for arguments
to callees

● For non-leaf functions, space for four arguments is
always allocated (4 * 8 bytes = 32 = 0x20)

● sub esp, 0x20

● Keep in mind that after this instruction, stack needs to be
aligned on 16 byte boundary (end in 0 hex)

– So you'll usually see sub esp, 0x28 instead

● In debug code, the callee usually puts the register
parameters there in the prologue

● In optimized, code, all bets are off, callee can do
whatever it wants

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 43

MS x64 ABI: Stack diagram

return addr

rcx

rdx

r8

r9

(rsp)

(rsp+08) hInstance

(rsp+10) hPrevInstance

(rsp+18) lpCmdLine

(rsp+20) nShowCmd

1008

1010

1018

1020

1028

return addr

rcx

rdx

r8

r9

(rsp+38) (return to _tmainCRT..)

(rsp+40) hInstance

(rsp+48) hPrevInstance

(rsp+50) lpCmdLine

(rsp+58) nShowCmd

1008

1010

1018

1020

1028

r8 home

r9 home

lpText

???

???

(rsp+10) home space

(rsp+18) home space

(rsp+20) lpCmdLine

(rsp+28) ???

(rsp+30) ???

0FE0

0FE8

0FF0

0FF8

1000

ecx home

edx home

(rsp) home space

(rsp+08) home space

0FD0

0FD8

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 45

MS x64 ABI: Stack diagram

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 46

MS x64 ABI: Stack diagram

return addr

rcx

rdx

r8

r9

(rsp+40) (return to _tmainCRT..)

(rsp+48) hInstance

(rsp+50) hPrevInstance

(rsp+58) lpCmdLine

(rsp+60) nShowCmd

1008

1010

1018

1020

1028

r8

r9

lpText

???

???

(rsp+18) arg_c

(rsp+20) arg_d

(rsp+28) lpCmdLine

(rsp+30) ???

(rsp+38) ???

0FE0

0FE8

0FF0

0FF8

1000

ecx

edx

(rsp+08) arg_a

(rsp+10) arg_b

0FE0

0FD8

return addr (rsp) home space0FD8

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 47

MS x64 ABI: Stack Example #2
● Optimized code

● Note that the WinMain parameters are not saved in their home
space

● Also note that 0x28 bytes of stack space are still reserved for the
parameters to MessageBoxA

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 48

System V x64 ABI

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 49

System V x64 ABI

● Used by Linux, BSD, Mac, others
● Totally different than MS x64 ABI

● Also totally different than GCC's x86 Linux ABI

● Calling convention uses many registers:
● 6 registers for integer arguments
● 8 registers for float/double arguments

● Some registers considered volatile and
can change across function calls, others
must be saved by the callee

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 50

SysV ABI: Parameters

● First available register for the parameter type is used
● 6 registers for integer parameters

● RDI, RSI, RDX, RCX, R8, R9

● 8 registers for float/double/vector parameters
● XMM0-XMM7

● No overlap, so you could have 14 parameters stored
in registers

● struct params can be split between registers

● Everything else is on the stack
● RAX holds number of vector registers (XMMx)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 51

SysV ABI: Parameter sequence

● Examples!
● int func1(int a, float b, int c)

● rax func1(rdi, xmm0, rsi)

● float func2(float a, int b, float c)
● xmm0 func2(xmm0, rdi, xmm1)

● float func3(float a, int b, int c)
● xmm0 func3(xmm0, rdi, rsi)

● Notice anything interesting about func1
and func3?

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 52

SysV ABI: Parameter example #1
printf("%i %i %f %i %f %i\n", 1, 2, 3.0, 4, 5.0, 6);

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 53

SysV ABI: Parameter example #2

typedef struct {
int a, b;
double d;

} structparm;

structparm s;

int e, f, g, h, i, j, k;
long double ld;
double m, n;
__m256 y;

extern void func (int e, int f, structparm s,
 int g, int h, long double ld, double m,
 __m256 y, double n, int i, int j, int k);

func (e, f, s, g, h, ld, m, y, n, i, j, k);

RDI: e XMM0: s.d [RSP+0]: ld

RSI: f XMM1: m [RSP+16]: j

RDX: s.a,s.b YMM2: y [RSP+24]: k

RCX: g XMM3: n

R8: h

R9: i

(This example is from the SysV x64 ABI specs)

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 54

SysV ABI: The stack

● Nothing new here, except changes due to 64 bit
platform

● Aligned on 16 byte boundaries
● GCC still uses RBP as a frame pointer by default
● No required home space like MS's ABI

● Sometimes parameters are saved on the stack
● It's in local variables and not behind the return address

● Functions can use stack space up to RSP+256
● Beyond that is the RED ZONE

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 55

x64 Reversing Tools

Tools for x64 Reversing: IDA

Tools for x64 Reversing: Windbg

Tools for x64 Reversing: Visual
DuxDebugger

Tools for x64 Reversing: edb

Other reversing tools for x64

● Dynamic instrumentation
● PIN
● DynamoRIO

● Virtual machines
● BOCHS
● QEMU

● That thing @msuiche is working on
● vdb/vtrace

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 61

How to get better at reversing

● Take a binary, any binary, but smaller is
probably easier

● Reverse it all
● Name every function, parameter, and variable
● Comment almost every line of assembly
● Do this without running it, unless you absolutely have to

● You'll be a pro in no time!
● Also, read the Rolf Rolles interview in HITB

005

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 62

x64 References!

● x64 architecture
● Intel Architecture Software Development Manuals:

http://www.intel.com/products/processor/manuals/
● AMD Architecture Programmer's Manuals:

http://developer.amd.com/documentation/guides/pages/default.aspx

● MS x64 ABI
● x64 Software Conventions:

http://msdn.microsoft.com/en-us/library/7kcdt6fy%28VS.80%29.aspx
● X64 Deep Dive:

http://www.codemachine.com/article_x64deepdive.html

● SysV x64 ABI
● System V Application Binary Interface:

http://www.x86-64.org/documentation/abi.pdf

http://www.intel.com/products/processor/manuals/
http://developer.amd.com/documentation/guides/pages/default.aspx
http://msdn.microsoft.com/en-us/library/7kcdt6fy(VS.80).aspx
http://www.codemachine.com/article_x64deepdive.html
http://www.x86-64.org/documentation/abi.pdf

SummerCon 2011 Intro to x64 Reversing - Jon Larimer 63

Questions?

● Contact info:
● E-mail: jlarimer@gmail.com
● Twitter: @shydemeanor
● Reddit: r0swell

